Severity: 8192
Message: Function create_function() is deprecated
Filename: geshi/geshi.php
Line Number: 4698
Backtrace:
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 4698
Function: _error_handler
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 4621
Function: _optimize_regexp_list_tokens_to_string
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 1655
Function: optimize_regexp_list
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 2029
Function: optimize_keyword_group
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 2168
Function: build_parse_cache
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/Process.php
Line: 45
Function: parse_code
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/models/Pastes.php
Line: 517
Function: syntax
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/controllers/Main.php
Line: 693
Function: getPaste
File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/index.php
Line: 315
Function: require_once
def CountVectorizer(texts, vocabulary): """ Transform a collection of texts to a matrix of token counts In order to be memory-efficient, the matrix of token counts has a sparse representation of the counts using scipy.sparse.csr_matrix """ j_indices = [] #indices is array of column indices indptr = [] # indptr points to row starts in indices and data values = [] #values is array of corresponding nonzero values indptr.append(0) for text in texts: token_counter = {} for token in text: if token in vocabulary: if vocabulary[token] in token_counter: token_counter[vocabulary[token]] += 1 else: token_counter[vocabulary[token]] = 1 j_indices.extend(token_counter.keys()) values.extend(token_counter.values()) indptr.append(len(j_indices)) X = scipy.sparse.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), ) return X