A PHP Error was encountered

Severity: 8192

Message: Function create_function() is deprecated

Filename: geshi/geshi.php

Line Number: 4698

Backtrace:

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 4698
Function: _error_handler

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 4621
Function: _optimize_regexp_list_tokens_to_string

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 1655
Function: optimize_regexp_list

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 2029
Function: optimize_keyword_group

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/geshi/geshi.php
Line: 2168
Function: build_parse_cache

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/libraries/Process.php
Line: 45
Function: parse_code

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/models/Pastes.php
Line: 517
Function: syntax

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/application/controllers/Main.php
Line: 693
Function: getPaste

File: /home/httpd/vhosts/scratchbook.ch/geopaste.scratchbook.ch/index.php
Line: 315
Function: require_once

LaTeX - Stikked
From Edgy Bird, 13 Years ago, written in LaTeX.
This paste is a reply to Codemirror test from Gracious Treeshrew - view diff
Embed
  1. \begin{module}[id=bbt-size]
  2. \importmodule[balanced-binary-trees]{balanced-binary-trees}
  3. \importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
  4.  
  5. \begin{frame}
  6.  \frametitle{Size Lemma for Balanced Trees}
  7.  \begin{itemize}
  8.  \item
  9.    \begin{assertion}[id=size-lemma,type=lemma]
  10.    Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}
  11.    of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
  12.     $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
  13.    \termref[cd=graphs-intro,name=node]{nodes} at
  14.    \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
  15.    \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
  16.   \end{assertion}
  17.  \item
  18.    \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
  19.      \begin{spfcases}{We have to consider two cases}
  20.        \begin{spfcase}{$i=0$}
  21.          \begin{spfstep}[display=flow]
  22.            then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
  23.            $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.
  24.          \end{spfstep}
  25.        \end{spfcase}
  26.        \begin{spfcase}{$i>0$}
  27.          \begin{spfstep}[display=flow]
  28.           then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes
  29.           \begin{justification}[method=byIH](IH)\end{justification}
  30.          \end{spfstep}
  31.          \begin{spfstep}
  32.           By the \begin{justification}[method=byDef]definition of a binary
  33.              tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
  34.            two children that are at depth $i$.
  35.          \end{spfstep}
  36.          \begin{spfstep}
  37.           As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
  38.            leaves.
  39.          \end{spfstep}
  40.          \begin{spfstep}[type=conclusion]
  41.           Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
  42.          \end{spfstep}
  43.        \end{spfcase}
  44.      \end{spfcases}
  45.    \end{sproof}
  46.  \item
  47.     \begin{assertion}[id=fbbt,type=corollary]  
  48.      A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.
  49.    \end{assertion}
  50.  \item
  51.      \begin{sproof}[for=fbbt,id=fbbt-pf]{}
  52.        \begin{spfstep}
  53.          Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree
  54.        \end{spfstep}
  55.        \begin{spfstep}
  56.          Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.
  57.        \end{spfstep}
  58.      \end{sproof}
  59.    \end{itemize}
  60.  \end{frame}
  61. \begin{note}
  62.  \begin{omtext}[type=conclusion,for=binary-tree]
  63.    This shows that balanced binary trees grow in breadth very quickly, a consequence of
  64.    this is that they are very shallow (and this compute very fast), which is the essence of
  65.    the next result.
  66.  \end{omtext}
  67. \end{note}
  68. \end{module}
  69.  
  70. %%% Local Variables:
  71. %%% mode: LaTeX
  72. %%% TeX-master: "all"
  73. %%% End: \end{document}
  74.